OPTIMAL COMBINATION OF CONTROL AND TRACKING
PMN Vol. 33, No. 2, 1968, pp. 185-193

G.S. SHELEMENT'EV
(Sverdlovsk)

(Received October 9, 1967)

The present paper contains a solution of the problem of bringing a controlled system to the
required state in the optimal way with a restriction imposed on the controlling force and
with tracking of some of the phase coordinates. The optimal instant of switchover from
tracking to control is determined. The problem considered is a certain minimax analog of
the stochastic control problem congidered in [1].

1. Formulation of the problem. Let there be a controlled object whose state
in the time interval?,<t<¢ B is described by the differential Eq.

dz [dt = Az + Bu (1.1)
Here x is the n-dimensional phase coordinate vector of the controlled object, u is the r-
dimensional vector of the controlling force, and A and B are constant matrices of the appro-
priate dimensionalities.
Let us consider the motion of this object under the following conditions.
1) The exact state x(ey) = 2° of the object is not known, but is restricted by some specified

condition x (¢,) & Gle,}.

2) In order to determme more precisely the phase state of the object, the motion x{¢) is
first tracked over some interval £, <7 <t,<tg, whereupon control begins at the instant
$=t, We assume here that measurements are taken of the coordinates 1, (7), £, <7 <t
(f = 1,..., m) of some m-dimensional vector z (7) related to the phase vector x (¢t) by Expres-
sien

z(x) = Hz () + A (1) 1.2)
where H is a constant matrix of order m x n, and A (7) is the error (which may be of random
character), The realization of the error A (7) is unknown, but has an intensity given by the
prior estimate

xAE@I<y, H,<<T<Cte, v=const >0 (1.3)

We shall assume from now on that the quantity }[A(7)] can be interpreted as some norm

of the fanction A(7) (e.g. that Y[A(T)] = max [|A(7)], where || A] is the Euclidean norm

of the vector A).
The phase coordinates x; (t,) are computed on the basis of the signal z (7) by means of

suitable solving operations [2 to 4].
3) The intensity %[u] of the permissible controlling force in the interval £,$t < tg is
bounded by some constant ¢ > 0,

x [u @ <<p (1.4)

Once again, we assume here that the quantity %[u} can be interpreted as the nom of
some function, e.g. that

180



Optimal combination of control and tracking 181

'8

s
[Viz@Pd] <p
ta

Thus, we have divided the time interval ¢, <t < ¢g into two parts: the tracking interval
ty ST L1, and the control interval ¢, < ¢ < ¢ g. We can now pose the problem of the combin-
ing of tracking and control to ensure the optimal final result of the process. In this connec-
tion it is interesting to find an instant ¢ = ¢, of switchover from tracking of the system mo-
tion to its control which will optimize a certain quality criterion (*), Ao example of such a
criterion is the closeness €[z (25)] of the object to the specified state x = x+ at the ins-
tant ¢ = ¢ 5 of temination of the process. One problem of this type is that of best mode of
convergence of the phase point x (‘,8) to the origin x = 0. In this case

. Y.
ez ()] = (22(t) + - . - + 22 (te)"
However, there are situations which require ensuring of closeness to a specified state
with respect to some of the coordinates only. Specifically, we can have

elz(tdl=(z2(t) + ...+ a2 ()" <)

In the general case &{x(¢g)] is some given function.

Let us refine the formulation of the problem.

The problem of determining the coordinates x; (¢,) of the object from the measurable
quantities z, (7) (1.2), (1.3) with the minimal error is the problem of optimal tracking of a
dynamic system. The latter can be formulated as follows [3 and 4].

Problem 1. We are required to find the optimal operation ¢,°(z (7)) which computes
the coordinate

T () =9 [2()] + o, =1+ o, (1.5)
with the smallest guaranteed error w; . The required solving operation ¢ must satisfy the
condition of minimax min 4 sup 4 |co'-| of the error w; over all the possible errors A of the
signal z (T) and over all lﬁe permissible operations ¢.

The upper bound §; (¢ ) of the modulus of the error @, , i.e. the quantity 8;(ty)=supy
Ia),-l for x[A] < v can be estimated in the known way [3 and 4] and expressed in terms of
the quantity v (1.3) and in terms of the norm of the operation ¢;° which solves Problem 1
(the tracking problem).

Thus, solution of the optimal tracking problem describes some domain R{ta’ x*} in the
phase space about the point x * = {d)io[z ()} by the instant ¢ = t, The points of this do-
main can be the true position of the object x (¢) at this instant. According to the above, the
domain in question is described by the inequalities

xi*—6i<xi<zi*+6i (i=1"--.’n) (1-6)

Moreover, we must take account of the result of the previous tracking fixes in the interval
1, STS ‘a’ (t;( t,) and the initial restriction x (to) = Ghol . Allowance for these condi-
tions can be made recurrently., Let us assume that the last tracking fix before the instant
t=¢_was taken at the instant ¢t = ta'< ¢4 ond that the domain G{t,’} of poasible values of
x(tayﬁ has been determined. The domain G{ ta'l determines the domain G tita'l of the
states x (t,) into which system of equations (1.1) with u = 0 can pass from the states x (¢ ")
€611 '}, In other words, the points of the domain G t) ta'} are given by Eqa.

z=X [ta, ta"12(ta") 1.7

where XT¢, ta'] is the fandamental matrix of system (1.1) and where x (¢,") belongs to Gle ;l.

*) In reality the tracking and control intervals are separated by a certain intermediate inter-
val during which the decision to switch over to control is taken. We shall idealize the
problem, however, by assuming that all the computations required for adopting this deci-
sion are carried out simultaneously, and even that switchover to control is poasible at
the instant ¢ = ¢, when tracking i s terminated.
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We conclude from this that the domain of possible states x (¢ ) is the set Glta} which is the
intersection of Gls,| ¢,°} and Rie }.
The problem of determining the domain Gl ‘a} must be solved in the course of realization

of the process.
Let us suppose now that switchover to control has occurred at the instant ¢ = ¢, It is

then expedient to consider the following problem.

Problem 2. Let the motion of the controlled object in the interval ¢ , <t <ig be
described by Eq. (1.1), Let the domain Gital of possible states and restriction (1.4) on the
controlling force u be given at the instant ¢ = ¢ . We are to determine the optimal control

4 {t) which ensures that
e(ty) = min,max,q,) e[z ()] (% [u] R,z (E)IromG L))  (1.8)

The solution of Problem 2, which follows from the known theory of linear systems con-
trol, will be described below. Let us assume for the present that the value of & (¢_) at the
instant ¢ = ¢ has been found. In order to decide whether switchover to control at the given
instant ¢ = ¢_ is advisable, we must also have a predicted value of z(ta') for ta'> t, Ve
shall denote the predicted quantity €(¢ a') computed on the basis of the tracking fixes ob-
tained by the instant ¢ = ¢, by the symbol & (‘a'l‘a)‘

We shall compute this quantity on the basis of the most unfavorable situation which can
be expected in future (i.e. when ¢;"> t,) on the basis of the data conceming the domain
Gha‘ obtained at the instant ¢ = ¢ . Let us inquire further into the meaning of the quantity
e (ta'lta). Let ¢ = ¢ be some instant (¢ "> t ). We choose some fixed value x (s,) = %% from
G{t }. On the basis of this state, by the instap* ¢ = ta'the system not subject to control

a
will arrive at the state

* (t') = X [t t,]z*
Solving in future the problem of tracking in the interval ¢ < ¢ < t,°, we obtain in accor-
dance with the foregoing the value

2 () = {9z (D]} GL<T<L)

such that
lz* (L)) — 2% () | < 8 ()

But the values xq(ta ’) constitute the domain G{t,’| ¢ ). Thus, in predicting the future
course of the process we must take account of all the points x;* lying in the lai (ta')l -neigh-
borhood of the domain G{sa’l ‘a}' Let us denote this neighborhood by Qha'l ¢ }. We now infer
that in futore (when ‘a' > ‘a) we shall encounter only domains R{‘a" x* (ta') , each of which
is the intersection of the domain defined by the inequalities

[24* () — 7, | << 8; (ta)

with the domain G{t,’| &}, where x*(t,") lies in Q{¢y’| ¢ o} . We must then solve Problem 2
on control in the segment (¢ * ‘ﬁl for each such domain G ta', x‘(ta')l . Let this solution

yield the quantity & (¢ ’, - e N
Next, we must consider the ?o]lowing problem.
Problem 3. We are to find the quantity S(ta'l ‘a) on the basis of the condition
e(t.'|tz) = sup,_, ) & (ta'; x* (ta)) for z° (1) € Q{t, 1.} (1.9)
The problem of choosing the instant ¢ = ¢  of switchover to control is now solved as fol-
lows. Let t =t  be some instant¢_ 2 0. Using the realize d data z (7) (to STLt ) we
solve Problem 1, determine the domain Ghal and, solving Problem 2, find the quantity
€ (t,). We then solve Problem 3 and construct the function €(T| t,) for all 7> ¢, If
e (7T ta) > e(:a) for all 7 > t o then switchover to control should be effected at the instant
t=1t,; otherwise we are guaranteed in future (for 7 = ta' > ta). from encountering the most
unfavorable situations only. On the other hand, if the function € (7 | t,) in the time interval
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8, T £ tg is such that the inequality & (&, [ta) < £(e,) is fulfilled at certain instants £ty
from this interval, then switchover to control can be effected prior to the instant:t = :a' at
which the function E£{7 [ t a) has a minimum; this is because even in the most unfavorable
case switchover at the instant ¢ =t ' guarantees a better result than does switchover to
control at the instant ¢=¢ .

Next, solving Problems 1, 2 and 3 consecutively at the instant ¢ = ‘a" we use the signal
z (T) realized in the interval £, < 7 <¢ " to find the instant 7 = ¢, corresponding to the
next minimum of the function &{(7 |t a } until which tracking can proceed. We continue in
this fashion until the instant t=¢ 2 when &(7.]¢%)> &G 20) forall 7> 1 0.

We have thus developed an algorithm for determining the optimal instant t = ¢ 0 of switch-
over from tracking to control of system motion,

2. Solution of Problem 1. In order to determine the domain G{¢,} we must com-
pute the quantities x;* and J; (¢,) (1.6) characterizing the polyhedron Rit,}. Let us describe
briefly the procedure for solving [4] the optimal tracking problem in the course of which
these quantities are determined.

Let the control u (7) (where £,< 7 < ¢,) in system (1,1) be identically equal to zero;
let restriction (1.3) be imposed on the signal z (7) (1.2), Assuming that the vector lunctions
2(7), A(7), and y (T) = Hx (T) are elements k (T) of some function space B{A(7), t,< 7 S
<t .} in which the norm p[h] is defined by Eq. p[a] = x[h (1)} (1.3), we can determine in
this space all the possible linesr bounded operations qSi[z (1)} among which the operation
which computes the coordinates x;{t,) on the basis of the signal 2 (7) (¢g< 7 < ¢,) is to be
found. The functions v; (7 ) which generate the operations ¢; [4(7)] in the space B consti-
tute the adjoint space B * in which the norm of the functions 4 and the norm of the opere-
tions ¢; coincide, x‘[v‘-] = x‘[qS.-]. The form of the operation ¢; is determined each time
by the choice of the space B,

For example, if the signals z [T) form the space C1A (1)} of functions which are contin-
uous in [zo, t,) and have the norm

¥ [h] = max_}| & (%) ||
then the general form of the linear operation is given by the Stieltjes integral

te

Q@)= S K (®)aV (3)
3
and the nom X *{ @] of the operation ¢ is defined by Eq.
Ypl=varlV, <t ¢,)

Here V {T) is a bounded function, and var [V, toSTE %,] is the total range of variation
of the function ¥ (7) in the segment [‘o' [RB

Let us make use of the minimax rule [4] to isolate from among the operations ¢; the op-
timal solving operation ¢; °[2(T)] which yields the smallest absolute error @; in the most
unfavorable case of the signal 1 (7) (1.2), (1.3). To this end we choose from among the sig-
nals y (7) those which carry the quantities x; (;,) = L.

Using the notation of [4], we obtain

vy Iz (1) =1} =[HX [, ;] 2 (t)]x¢ =

Knowing the signals {y (7)| x; () = 1}, we can find the minimal signal y ©(T) from the
condition

=% {¥° ()] = min x [{y (*) |z, (t,) = 1}]

The optimal tracking problem has a solution if and only if }x°=y[y °(r)] > 0.

Accotding to the minimax rule, the optimal solving operation ¢, has the norm x *[ ¢,z
(7)]] = 1/x° and can be identified among the other linear operations ¢; by the maximum
property, i.e. by the fact that on the minimal signal y°(7) this operation yields the maximum
possible result as compared with all the other operations ¢; with the ssme norm x‘[¢;] -
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= 1/x° Expressing this mathematically, we have
@ [v° (] =maxy {9, [v° (] for x*[®,]=1/x}
The quantities &, (s,) are given by Formula

8, (t,) = sup, | 9; [A (D] = vx* [9; [z ()] = v/x°
The intersection of the domains Rit,} (1.6) and G{ty| ¢} (1.7) defines the required do-
main Gha} of possible states at the instant t=1¢,.

3. Solution of Problem 2. We now tum to the determination of the quantity
e{z.) (1.8) characterizing the closeness of the phase point x(tﬂ) to the specified state x =
= x+ at the instant of termination of the process t =t 5.

Thus, let us assume we are given the instant t = ¢, the domain G{zal of possible states
of the system at this instant, and the set Plu: %[u]l S u} of permissible controls u (1.4).
For each fixed control u from P{u} the quantity elx ()] depends on the choice of the ini-
tial valee of x (z,), and the most unfavorable case, i.e. that where the phase point x (2‘3) is
most distant from the specified value x = x«, is given by Expression

gy (ta) = maxy g, e[z (tg)]  for z (t,)romG {¢_}

If we are required to ensure minimal deviation of the phase point from the position x = x«
at the instant ¢t = ¢t g for any initial state x (#,) from G{taf, then we must choose a control u
from P{u} which minimizes the quantity & ,(t,). The maximal guarsnteed closeness €(z,)
can then be determined from the condition

e (la) = min.g, (t,) = min, maxy ¢ )€ [2 (£6)] (3.1)
for ufromP {u}, z(!,) us G {1,}

In order to solve Problem (3.1) by the substitution of variables x =y + w we break down
system (1.1) into two subsystems:

dy/dt = Ay + Bu, Y(ta) = ¥* (3.2)
dwidt = Aw, w(ts) =2z (ty)—7y* z{t)EG{ta} 3.3)

The point y®is chosen to facilitate computation. For example, we can set y®= 0. The
linear transformation
w=X [t37 tz] w(t!) (3'4)
transforms the domain G {¢,} into some domain Wiz, }. The solutions y (tﬁ} of system {3.2)

for various u (1.4) form the attainability domain ['ly%, ¢, 45, ] of the process y {t) by the
instant ¢ = tg fory (t;) = y® and for u = u(¢) (1.4). By the Cguchy formula we have

ta
y(t) = X [te tal y* + | X [t5, 7] Bu (v} dv (3.5)
!E
From (3.1), {3.4), and (3.5) we infer that
e(ty) = min, v [y (t:)] for ®[u]<p (3.6)
Here
7 [y (ta)] = max, e[y (f3) +wl for wiomIV {f,} 3.7)

Problem (3.6), (3.7) consists in determining the point yoﬁ from the domain F[y“. e tas ul
and the control u = & °{¢) which minimize the function y{y (¢ 4)] under condition (1.4). In other
words, we must determine the points y (¢ g) which form the attainability domain of the process
y {#). To find the attainability domainI'ly?, ¢,, ¢ B ] of the process let us consider the
problem of optimal transfer [3] of system (3.2) from the initial point y*to some temporarily
fixed point y‘B in a time 1, < t < ¢g under the condition of minimal intensity *[ul. As we
know {4], the solution of such a problem can be reduced to finding the vector k which solves
the problem
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max, ¢ [¥1% = {° [4] @3.8)
under the condition
PIB'S[r, L] k1< 1 (3.9)
where S[¢, tg] is the fundamental matrix of the system ds/dt = — A’s adjoint to system

(3.3), and where c[y,ﬁ] =yP- X[t’B, ta]y"'. The control u°(¢) which solves the problem of
optimal transfer of system (3.2) from the position y% to the position y B has the norm p*[(u] =
= {C’[yﬁ] and can be determined from the maximum rule [4],

ta i3
\ kSIx, t5] Bu® (v)dv = max, | kS[x, ;) Bu(v)ds (3.10)
“E ‘G

v o

for p*[u} <3 1vP)
where k° and §°[yﬁ] are the solution of problem (3.8), (3.9).

Thus, by solving problem (3.8), (3.9) we obtain an expression for the control intensity in
the form of the function {°[y”] of the final state y (¢ 5) of system (3.2) at the instant ¢ = ¢ 4.
In view of the fact that the intensity is bounded by the constant i (1.4) , we infer from (f6)
and (3.7) that the problem of determining &(z;) reduces to the problem of finding the arbi-
trary extremum

miny 7 [y (¢a)] = & (ta) (3.11)

under the condition
Cly)l<cp (3.12)

where {°[y (‘,B)] must be determined from conditions (3.8), (3.9).

Having determined the point yo'B corresponding to the minimum from (3.7), (3.11), and
(3.12), we can find from (3.8) and (3.9) the optimal control u®{t) which ensures maximal
closeness €(z ) of the phase point to the specified state x = x4

Notes 3.1. We note that in those cases where problem (3.6), (3.7) involves minimiza-
tion of the function y[y (tp)] whose datum levels yly (‘ﬁ)] = const are convex, the problem
of determining the value of ¢{t ) becomes simpler, since some of the minimization and
maximization operations in prob?em (3.8) to (3.10) can then be interchanged [3, 5 and 6].

3.2. We have described a procedure for detemining the optimal instant t: of switchover
from tracking to control of object motion under the assumption that the tracking problem.is
solved each time at the instant 7 = ¢,” when the function € (7|¢,) assumes its minimal
value in the segment [‘a’- tﬁ]. It is sometimes convenient to follow a similar procedure in
which the sequence of instants tj = t;_; + At of the tracking fixes is preselected rather
than chosen on the basis of the minimum condition for the function €(7|¢y).

4. Example. Let us consider a material point whose motion along the straight line
£ is described by Eqs.
dl‘l d.l‘g dE
=% —J?-':O, 01 (21=E,2‘==W‘)
We assume that the exact velocity of the point at ¢ = 0 is not known, but that the velo-
city at this instant satisfies the condition mgy < x,(0) < ny. The velocity x, (¢) at the instant
T =t can be determined by measuring the coordinate % . This measurement involves some
error @, (¢) of bounded magnitude

Jo () <9, 6> 0— const 4.2)

We also assume that the motion of the point can be corrected by varying the velocity of
the point, but that the supply of energy *lu] available for this correction is limited,

ts

u[u]=[§

a

(4.1)

/s
ul (v) dr] <K, p>0—const (4.3)
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We are required to choose the instant ¢ = :a° of switchover from tracking to control in
such a way that in the time (1 — ¢,°) remaining for control, the control u (4.3) can be used
to minimize the velocity of the point, i.e. such that
e[z (tg)l=|z:(f5) | = mintaL (4.4)
at the instant ¢t = tg of termination of motion.
We know [4] that the optimal solving operation ¢°[x1] which determines the velocity
x, {t,} of a point moving by inertia W (7)}=0,0<7< t,) at the instant ¢ = ¢, under condi~
tion {4.2) is given by
§° [a1] =[5 (¢) — 21 (0)] / 1y = x2 (¢,) (4-5)
and therefore coincides with the standard formula for computing the velocity of a uniformly
moving point. We note that the optimal solving operation «;§°[xxg} has a form different from
(4.5) for a different specified intensity of the error A (7). The velocity x,(t,) is computed
with the error w4 (), and jw,(¢,)| < 28/¢,.
The domain of possible states G za'-} is a segment ["i' m‘-], where

LY for ¥ t+A 2>, mi_y L A S
my ==
' Yait Aj for ¥+ A <0y ' ; Yai — Ay for yo;— A > mig

Here yq; = %, (t; ) (1.5), (4.5) and A; = 28/t,;, and the instants t,; are found at the
(i — 1)-th step of solving Problem 3. Recalling that the maximum of the function &lx (z,)]
with respect to w is attained on the boundary of the domain W{t,;} (3.4), i.e. at the point
W= {n; ~ m; }/2, we find that at each instant ¢ = t,; the function y{y] (3.7} is given by

TWl=1y| 4 wy (4.6)
and that the function £°[y] after we have solved problem (3.8), (3.9), (4.3) is given by Ex-
pression

Bly—wl ommy
P)

CWl=grag W= v M) =p(—t)" (%7

We have thus reduced the problem to finding the minimum of the function (4.6) under
Condition (4.7). At each instant ¢ = ¢,; the minimum €{z ) (3.11) of the function ylyl (4.6)
either: a) equals w,;, and is attained at the point y = 0 (if | y,; | <M (24;)), or b) equals
wai+|yqil —M(t,;) and is attained at one of the ends of the segment [ym- ~ Mg )yg +
+ M(t“- )T(H !yai{ >M (‘ai))' In the latter case switchover to control should be effected
immediately.

The predicting function (7 |z,;) for all 7> ¢,; is given by

L2 for |y i< M(x)
efx)t, )= ; '
wei F Yl — M () for [y [>M(v)
where Wois ¥ i and M (7) denote the quantities
A for A, (JN—A)sign NV, for AWy
Ve wey for AD>w,;, Yt ¥’ for A>wy

I

f i )
Ni:{m or fni|2>|m;l A E' M(-r):p(i-‘f)/'
my for |ny|<|m;l N

The above procedure was realized on a computer for various values of the constants 8,
K, m gy, and n 4, and specifically (see Fig. 1) for 8=0.1,u=385ny=-m;=3,x,*=1
The instants of prediction tumed out to be ¢, ,= 0,452, ¢, , = 0.867, ¢, 4 = 0.902. Fort=t4,
we obtained £ (T | t,4)> ele, )= 0.137 for all 7 > ¢ .. Hence, the instantt =1, ; was
the optimal instant of switchover from tracking to coutrof of motion of the point.
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sit/t,)
J
2
et/t,,)
erc/t,) / §
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