OPTIMAL COMBINATION OF CONTROL AND TRACKING

PMM Vol. 32, No. 2, 1968, pp. 185-193

G.S. SHELEMENT'EV
 (Sverdlovak)

(Received October 9, 1967)

The present paper contains a solution of the problem of bringing a controlled system to the required state in the optimal way with a restriction imposed on the controlling force and with tracking of some of the phase coordinates. The optimal instant of switchover from tracking to control is determined. The problem considered is a certain minimax analog of the stochastic control problem considered in [1].

1. Formulation of the problem. Let there be a controlled object whose state in the time interval $t_{0} \leq t \leq{ }_{i}$ is described by the differential Eq.

$$
\begin{equation*}
d x / d t=A x+B u \tag{1.1}
\end{equation*}
$$

Here x is the n-dimensional phase coordinate vector of the controlled object, u is the r dimensional vector of the controlling force, and A and B are constant matrices of the appropriate dimensionalities.

Let us consider the motion of this object under the following conditions.

1) The exact state $x\left(t_{0}\right)=x^{\circ}$ of the object is not known, but is restricted by some specified condition $x\left(s_{0}\right) \in G\left\{t_{0}\right\}$.
2) In order to determine more precisely the phase state of the object, the motion $x(t)$ is first tracked over some interval $t_{0} \leq \tau \leq t_{a} \leq t^{\prime} \beta_{\text {, whereupon control begins at the instant }}$ $t=t_{\alpha_{0}}$. We assume here that measurements are taken of the coordinates $z_{j}(T), t_{0} \leq T \leq t_{a}$ $(j=1, \ldots, m$) of some m-dimensional vector $x(T)$ related to the phase vector $x(t)$ by Expressien

$$
\begin{equation*}
z(\tau)=H x(\tau)+\Delta(\tau) \tag{1.2}
\end{equation*}
$$

where H is a constant matrix of order $m \times n$, and $\Delta(\tau)$ is the error (which may be of random character). The realization of the error $\Delta(\tau)$ is unknown, but has an intensity given by the prior estimate

$$
\begin{equation*}
\chi[\Delta(\tau)] \leqslant v, \quad t_{0} \leqslant \tau \leqslant t_{\alpha}, \quad v=\text { const }>0 \tag{1.3}
\end{equation*}
$$

We shall assume from now on that the quantity $\chi[\Delta(\tau)]$ can be interpreted as some norm of the function $\Delta(\tau)$ (e.g. that $\chi[\Delta(\tau)]=\max \|\Delta(\tau)\|$, where $\|\Delta\|$ is the Euclidean norm of the vector Δ).

The phase coordinates $x_{i}\left(t_{\alpha}\right)$ are computed on the basis of the signal $z(\tau)$ by means of auitable solving operations [2 to 4].
3) The intensity $x[u]$ of the penmissible controlling force in the interval $t_{\alpha} \leq t \leq{ }^{\boldsymbol{t}} \beta^{\text {is }}$ bounded by some constant $\mu>0$,

$$
\begin{equation*}
x[u(t)] \leqslant \mu \tag{1.4}
\end{equation*}
$$

Once again, we assume here that the quantity $x[u]$ can be interpreted as the norm of some function, e.g. that

Thus, we have divided the time interval $t_{0} \leq t \leq t_{\beta}$ into two parts: the tracking interval $t_{0} \leq \tau \leq t_{a}$ and the control interval $t_{\alpha} \leq t \leq t_{\beta}$. We can now pose the problem of the combining of tracking and control to ensure the optimal final result of the process. In this connection it is interesting to find an instant $t=t_{\alpha}$ of switchover from tracking of the syatem motion to its control which will optimize a certain quality criterion (*). An example of such a criterion is the closeness $\varepsilon\left[x\left(t_{\beta}\right)\right]$ of the object to the specified state $x=x *$ at the ins$\operatorname{tant} t=t_{\beta}$ of termination of the process. One problem of this type is that of best mode of convergence of the phase point $x\left(t_{\beta}\right)$ to the origin $x=0$. In this case

$$
\varepsilon\left[x\left(t_{3}\right)\right]=\left(x_{i}^{2}\left(t_{\beta}\right)+\ldots+x_{n_{j}}^{2}\left(t_{\beta}\right)\right)^{1 / s}
$$

However, there are situations which require ensuring of closeness to a specified state with respect to some of the coordinates only. Specifically, we can have

$$
\varepsilon\left[x_{1}\left(t_{\beta}\right)\right]=\left(x_{1}^{2}\left(t_{\beta}\right)+\ldots+x_{A}^{2}\left(t_{\beta}\right)\right)^{1 / 2} \quad(k<n)
$$

In the general case $\varepsilon\left[x\left(\ell_{\beta}\right)\right]$ is some given function.
Let us refine the formulation of the problem.
The problem of deternining the coordinates $x_{i}\left(t_{\alpha}\right)$ of the object from the measurable quantities $z_{j}(\mathcal{T})(1,2),(1.3)$ with the minimal error is the problem of optimal tracking of a dynamic system. The latter can be formulated as follows [3 and 4].

Problem l. We are required to find the optimal operation $\phi_{i}^{\circ}[z(\tau)]$ which computes the coordinate

$$
\begin{equation*}
x_{i}\left(t_{\alpha}\right)=\varphi_{i}^{0}[z(\tau)]+\omega_{i}=x_{i}^{*}+\omega_{i} \tag{1.5}
\end{equation*}
$$

with the smallest guaranteed error ω_{i}. The required solving operation $\phi_{i}{ }^{\circ}$ must satisfy the condition of minimax min $\phi^{\sup }\left|\omega_{i}\right|$ of the error ω_{i} over all the possible errors Δ of the signal $z(\tau)$ and over all the permissible operations ϕ.

The upper bound $\delta_{i}\left(t_{a}\right)$ of the modulus of the error ω_{i}, i.e. the quantity $\delta_{i}\left(t_{a}\right)=\sup \Delta$ $\left|\omega_{i}\right|$ for $\chi[\Delta] \leq \nu$ can be estimated in the known way [3 and 4] and expressed in terms of the quantity ν (1.3) and in terms of the norm of the operation $\phi_{i}{ }^{\circ}$ which solves Problem 1 (the tracking problem).

Thus, solution of the optimal tracking problem describes some domain $R\left\{t_{a t} x^{*}\right\}$ in the phase space about the point $x^{*}=\left\{\phi_{i}^{\circ}[z(\tau)]\right\}$ by the instant $t=t_{a^{*}}$. The points of this domain can be the true position of the object $x\left(t_{a}\right)$ at this instant. According to the above, the domain in question is described by the inequalities

$$
\begin{equation*}
x_{i}^{*}-\delta_{i} \leqslant x_{i} \leqslant x_{i}^{*}+\delta_{i} \quad(i=1, \ldots, n) \tag{1.6}
\end{equation*}
$$

Moreover, we must take account of the result of the previous tracking fixes in the interval $t_{0} \leq \tau \leq t_{a}{ }^{\prime}\left(t_{a}{ }^{\prime}<t_{\alpha}\right)$ and the initial restriction $x\left(t_{0}\right) € G\left\{t_{0}\right\}$. Allowance for these conditions can be made recurrently. Let us assume that the last tracking fix before the instant $t=t^{\prime}$ was taken at the instant $t=t_{a}{ }^{\prime}<t_{a}$, and that the domain $\left.G \mid t_{a}{ }^{\prime}\right]$ of possible values of $\left.x\left(t_{a}\right)^{\prime}\right)$ has been determined. The domain $\left.G\left\{t_{a}\right\}\right\}$ determines the domain $G\left\{t_{d} \mid t_{a}{ }^{\prime}\right\}$ of the states $x\left(t_{\alpha}\right)$ into which system of equations (1.1) with $u \equiv 0$ can pass from the atates $x\left(\ell_{\alpha}{ }^{\prime}\right)$ $E G\left\{t_{a}{ }^{\prime}\right\}_{0}$ In other words, the points of the domain $G\left\{t_{d} t_{a}{ }^{\prime}\right\}$ are given by Eqs.

$$
\begin{equation*}
x=X\left[t_{a}, t_{\alpha}^{\prime}\right] x\left(t_{a}^{\prime}\right) \tag{1.7}
\end{equation*}
$$

where $X\left[f_{b}, t_{a}\right]$ is the fundamental matrix of syatem (1.1) and where $x\left(f_{a}{ }^{\prime}\right)$ belonge to $G\left\{t_{a}^{a}\right\}$.

[^0]We conclude from this that the domain of possible states $x\left(t_{a}\right)$ is the set $G\left\{_{a}\right\}$ which is the intersection of $G\left\{t_{a} \mid t_{a}\right\}$ and $R\left\{t_{a}\right\}$.

The problem of determining the domain $G\left\{t_{a}\right\}$ must be solved in the course of realization of the process.

Let us auppose now that switchover to control has occurred at the instant $t=t_{a}$. It is then expedient to consider the following problem.

Problem 2. Let the motion of the controlled object in the interval $t_{a} \leq t \leq t_{\beta}$ be described by Eq. (1.1). Let the domain $G\left\{t_{a}\right\}$ of possible states and restriction (1.4) on the controlling force u be given at the instant $t=t_{a^{*}}$. We are to determine the optimal control $u(t)$ which ensures that

$$
\begin{equation*}
\varepsilon\left(t_{\alpha}\right)=\min _{u} \max _{x\left(t_{\alpha}\right)} \&\left[x\left(t_{\xi}\right)\right] \quad\left(x[u] \leqslant \mu, x\left(t_{\alpha}\right) \text { from } G\left\{t_{\alpha}\right\}\right) \tag{1.8}
\end{equation*}
$$

The solution of Problem 2, which follows from the known theory of linear systems control, will be described below. Let us assume for the present that the value of $\varepsilon\left(t_{a}\right)$ at the instant $t=t_{a}$ has been found. In order to decide whether switchover to control at the given instant $t=t_{a}$ is advisable, we must also have a predicted value of $\varepsilon\left(t_{a}{ }^{\prime}\right)$ for $t_{a}^{\prime}>t_{a}$. We shall denote the predicted quantity $\varepsilon\left(t_{a}{ }^{\prime}\right)$ computed on the basis of the tracking fixes obtained by the instant $t=t_{a}$ by the symbol $\varepsilon\left(t_{a}{ }_{a} \mid t_{a}\right)$.

We shall compute this quantity on the basis of the most unfavorable situation which can be expected in future (i.e. when $t_{a}{ }^{\prime}>t_{\alpha}$) on the basis of the data concerning the domain
 $\varepsilon\left(t_{a} \mid t_{a}\right)$. Let $t=t_{a}^{\prime}$ be some instant $\left(t_{a}{ }^{\prime}>t_{a}\right)$. We choose some fixed value $x\left(t_{a}\right)=x^{a}$ from $G\left\{t_{a}\right\}$. On the basis of this state, by the instan $t=t_{a}{ }^{\prime}$ the system not subject to control will arrive at the state

$$
x^{x}\left(t_{\alpha}^{\prime}\right)=X\left[t_{\alpha}^{\prime}, t_{\alpha}\right] x^{\alpha}
$$

Solving in future the problem of tracking in the interval $t_{0} \leq t \leq t_{a}^{\prime}$, we obtain in accordance with the foregoing the value

$$
x^{*}\left(t_{\alpha}^{\prime}\right)=\left\{\varphi_{i}^{0}[z(\tau)]\right\} \quad\left(t_{0} \leqslant \tau \leqslant t_{\alpha}^{\prime}\right)
$$

such that

$$
\left|x_{i}^{*}\left(t_{\alpha}^{\prime}\right)-x_{i}^{\alpha}\left(t_{\alpha}^{\prime}\right)\right| \leqslant \delta\left(t_{\alpha}\right)
$$

But the values $x{ }^{a_{f}} f_{a}{ }^{\prime}$) constitute the domain $G\left\{t_{a}{ }^{\prime} \mid t_{a}\right\}$. Thus, in predicting the future corirse of the process we must take account of all the points $x_{i}{ }^{*}$ lying in the $\left\{\delta_{i}\left({ }_{c}{ }_{a}{ }^{j}\right)\right\}$-neighborhood of the domain $\left.G t_{a}{ }^{\prime} t_{a}\right\}$. Let us denote this neighborhood by $Q\left\{t_{a}{ }^{\prime} \mid t_{f}\right\}$. We now infer that in future (when $t_{a}^{\prime}>t_{a}$) we shall encounter only domains $\left.R\left\{t_{a}{ }^{\prime}, x^{*}{ }^{*} t_{a}\right\}\right\}$, each of which is the intersection of the domain defined by the inequalities

$$
\left|x_{i}^{*}\left(t_{\alpha}^{\prime}\right)-x_{i}\right| \leqslant \delta_{i}\left(t_{\alpha}^{\prime}\right)
$$

with the domain $G\left\{t_{a}{ }^{\prime} \mid t_{a}\right\}_{2}$ where $x^{*}\left(t_{\alpha}{ }^{\prime}\right)$ lies in $Q\left\{t_{a}{ }^{\prime} \mid t_{a}\right\}$. We must then solve Problem 2 on control in the segment $\left[t_{a}{ }^{\prime}{ }^{t}{ }_{\beta}\right]$ for each such domain $G\left\{_{t}{ }_{a}{ }^{\prime} x^{*}\left(t_{a}\right)\right\}$. Let this solution yield the quantity $\varepsilon\left(c_{q}^{\prime}, x^{*}\left(t_{q}^{\beta}\right)\right)$.

Next, we must consider the following problem.
Problem 3. We are to find the quantity $\varepsilon\left(t_{\alpha}{ }^{\prime} \mid t_{\alpha}\right)$ on the basis of the condition

$$
\begin{equation*}
\varepsilon\left(t_{\alpha}^{\prime} \mid t_{\alpha}\right)=\sup _{x^{*}\left(t_{\alpha^{\prime}}\right)} \varepsilon\left(t_{\alpha}^{\prime} ; x^{*}\left(t_{\alpha}^{\prime}\right)\right) \quad \text { for } \quad x^{*}\left(t_{\alpha}^{\prime}\right) \in Q\left\{t_{\alpha}^{\prime} \mid t_{\alpha}\right\} \tag{1.9}
\end{equation*}
$$

The problem of choosing the instant $t=t_{a}$ of switchover to control is now solved as follows. Let $t=t_{\alpha}$ be some instant $t_{\alpha} \geq 0$. Using the realize d data $z(\tau)\left(t_{0} \leq \tau \leq t_{\alpha}\right)$, we solve Problem 1, determine the domain $G\left\{t_{a}\right\}$ and, solving Problem 2, find the quantity $\varepsilon\left(t_{a}\right)$. We then solve Problem 3 and construct the function $\varepsilon\left(\tau \mid t_{a}\right)$ for all $\tau>t_{a^{\text {. }}}$ If $\varepsilon\left(\tau \mid t_{a}\right)>\varepsilon\left(t_{a}\right)$ for all $\tau>t_{a}$, then switchover to control should be effected at the instant $t=t_{\alpha}$; otherwise we are guaranteed in future (for $\tau=t_{a}{ }^{\prime}>t_{\alpha}$), from encountering the most unfavorable situations only. On the other hand, if the function $\varepsilon\left(\tau \mid \varepsilon_{\alpha}\right)$ in the time interval
$t_{\alpha}<\tau \leq t_{\beta}$ is such that the inequality $\varepsilon\left(\alpha_{\alpha}{ }^{\prime} \mid t_{a}\right) \leq \varepsilon\left(t_{\alpha}\right)$ is fulfilled at certain instants $t_{\alpha}{ }^{\prime}$ from this interval, then switchover to control can be effected prior to the instant $:=t_{\alpha}^{\prime}$ at which the function $\mathcal{E}\left(T \mid t_{a}\right)$ has a minimum; this is because even in the most unfavorable case switchover at the instant $t=t_{\alpha}^{\prime}$ guarantees a better result than does switchover to control at the instant $t=\boldsymbol{t}_{\boldsymbol{a}}$.

Next, solving Problems 1,2 and 3 consecutively at the instant $t=t_{a}^{\prime}$, we use the signal $z(\tau)$ realized in the interval $t_{0} \leq \tau \leq t_{a}^{\prime}$ to find the instant $\tau=t_{a}{ }^{\prime \prime}$ corresponding to the next minimum of the function $\varepsilon\left(\tau \mid t_{a}\right)$ until which tracking can proceed. We continue in this fashion until the instant $t=t_{a}{ }^{0}$ when $\varepsilon\left(\tau_{a}{ }^{0} \mid t_{a}{ }^{0}\right)>\varepsilon\left(t_{a}{ }^{0}\right)$ for all $\tau>t_{a}{ }^{0}$.

We have thus developed an algorithm for determining the optimal instant $t=t_{a}^{0}$ of switchover from tracking to control of system motion.
2. Solution of Problem 1. In order to determine the domain $G\left\{t_{a}\right\}$ we must compute the quantities x_{i}^{*} and $\delta_{i}\left(t_{a}\right)$ (1.6) characterizing the polyhedron $R\left\{t_{a}\right\}^{\alpha}$. Let ns describe briefly the procedure for solving [4] the optimal tracking problem in the course of which these quantities are determined.

Let the control $u(\tau)$ (where $t_{0} \leq \tau \leq t_{\alpha}$) in system (1.1) be identically equal to zero; let restriction (1.3) be imposed on the signal $z(\tau)$ (1.2). Assuming that the vector functions $z(\tau), \Delta(\tau)$, and $y(\tau)=H x(\tau)$ are elements $h(\tau)$ of some function space $B\left\{h(\tau), t_{0} \leq \tau \leq\right.$ $\left.\leq_{t_{a}}\right\}$ in which the norm $\rho[h]$ is defined by Eq. $\rho[h]=\chi[h(\tau)]$ (1.3), we can determine in this space all the possible linear bounded operations $\phi_{i}[z(\tau)]$ among which the operation which computes the coordinates $x_{i}\left(t_{a}\right)$ on the basis of the signal $z(\tau)\left(t_{0} \leq T \leq t_{a}\right)$ is to be found. The functions $v_{i}(\tau)$ which generate the operations $\phi_{i}[h(\tau)]$ in the space B constitute the adjoint space B * in which the norm of the functions ψ_{i} and the norm of the operations ϕ_{i} coincide, $\chi^{*}\left[v_{i}\right]=\chi^{*}\left[\phi_{i}\right]$. The form of the operation ϕ_{i} is determined each time by the choice of the space B.

For example, if the signals $x(\tau)$ form the space $C\{h(\tau)\}$ of functions which are continuous in $\left[t_{0}, i_{\alpha}\right]$ and have the norm

$$
x[h]=\max _{\tau}\|h(\tau)\|
$$

then the general form of the linear operation is given by the Stieltjes integral

$$
\varphi[h(\tau)]=\int_{i_{0}}^{t_{\alpha}} h^{\prime}(\tau) d V(\tau)
$$

and the norm $\chi *[\phi]$ of the operation ϕ is defined by Eq.

$$
x^{*}[\varphi]=\operatorname{var}\left[V, t_{0} \leqslant \tau \leqslant t_{\alpha}\right]
$$

Here $V(\tau)$ is a bounded function, and var $\left[V, t_{0} \leq \tau \leq t_{a}\right]$ is the total range of variation of the function $V(\tau)$ in the segment $\left[t_{0}, t, t\right]$.

Let us make use of the minimax rule [4] to isolate from among the operations ϕ_{i} the optimal solving operation $\phi_{i}{ }^{\circ}[x(\tau)]$ which yields the smallest absolnte error ω_{i} in the most unfavorable case of the signal $g(\tau)(1.2),(1,3)$. To this end we choose from among the signals $y(T)$ those which carry the quantities $x_{i}\left(t_{\alpha}\right)=1$.

Using the notation of [4], we obtain

$$
\left\{y(\tau) \mid x_{i}\left(t_{\alpha}\right)=1\right\}=\left[H X\left[\tau, t_{\alpha} \mid x\left(t_{\alpha}\right)\right]_{x\left(t_{\alpha}\right)=1}\right.
$$

Knowing the signals $\left\{y(\tau) \mid x_{i}\left(t_{a}\right)=1\right\}$, we can find the minimal signal $y^{\circ}(\tau)$ from the condition

$$
\chi^{\circ}=\chi\left[y^{\circ}(\tau)\right]=\min _{\psi} \chi\left[\left\{y(\tau) \mid x_{i}\left(t_{\alpha}\right)=1\right\}\right]
$$

The optimal tracking problem has a solution if and only if $\chi^{\circ}=\chi\left[y^{\circ}(\tau)\right]>0$.
According to the minimax rule, the optimal solving operation ϕ_{1}^{0} hes the norm $X^{*}\left[\phi_{i}{ }^{\circ}[z\right.$ $(\tau)]]=1 / \chi^{\delta}$ and can be identified among the other linear operations ϕ_{i} by the maximum property, i.e. by the fact that on the minimal signal $y^{\circ}(\tau)$ this operation yielde the maximum possible result as compared with all the other operations ϕ_{i} with the sme norm $\chi^{*}\left[\phi_{i}\right]=$
$=1 / X^{\circ}$. Expressing this mathematically, we have

$$
\varphi_{i}^{*}\left[y^{\circ}(\tau)\right]=\max _{\varphi}\left\{\varphi_{i}\left[y^{\circ}(\tau)\right] \quad \text { for } \chi^{*}\left[\varphi_{i}\right]=1 / \chi^{\circ}\right\}
$$

The quantities $\delta_{i}\left(t_{\alpha}\right)$ are given by Formula

$$
\delta_{i}\left(t_{\alpha}\right)=\sup _{\Delta}\left|\varphi_{i}^{*}[\Delta(\tau)]\right|=v \chi^{*}\left[\varphi_{i}^{0}[z(\tau)]\right]=v / \chi^{0}
$$

The intersection of the domains $R\left\{t_{a}\right\}$ (1.6) and $G\left\{t_{a} \mid t_{a}\right\}$ (1.7) defines the required domain $G\left\{t_{\alpha}\right\}$ of possible states at the instant $t=t_{\alpha}$.
3. Solution of Problem 2. We now tum to the determination of the quantity $e\left(t_{\alpha}\right)$ (1.8) characterizing the closeness of the phase point $x\left(t_{\beta}\right)$ to the specified state $x=$ $=x \neq$ at the instant of termination of the process $t=t_{B}$.

Thus, let us assume we are given the instant $t=t_{a}$, the domain $G\left\{t_{a}\right\}$ of possible states of the system at this instant, and the set $P\{u: \mathcal{X}[u] \leq \mu\}$ of permissible controls u (1.4). For each fixed control u from $P\{u\}$ the quantity $\varepsilon\left[x\left(t_{\beta}\right)\right]$ depends on the choice of the initial value of $x\left(t_{\alpha}\right)$, and the most unfavorable case, i.e. that where the phase point $x\left(t_{\beta}\right)$ is most distant from the specified value $x=x *$, is given by Expression

$$
\varepsilon_{u}\left(t_{\alpha}\right)=\max _{x\left(t_{\alpha}\right)} \varepsilon\left[x\left(t_{\beta}\right)\right] \quad \text { for } x\left(t_{\alpha}\right) \text { from } G\left\{t_{a}\right\}
$$

If we are required to ensure minimal deviation of the phase point from the position $x=x_{*}$ at the instant $t=t \beta$ for any initial state $x\left(t_{\alpha}\right)$ from $G\left\{t_{a}\right\}$, then we must choose a control u from $P\{u\}$ which minimizes the quantity $\varepsilon_{u}\left(t_{\alpha}\right)$. The maximal guaranteed closeness $\varepsilon\left(t_{a}\right)$ can then be determined from the condition

$$
\begin{gather*}
\varepsilon\left(t_{\alpha}\right)=\min _{u} \varepsilon_{u}\left(t_{\alpha}\right)=\min _{u} \max _{x\left(t_{\alpha}\right)} \varepsilon\left[x\left(t_{\beta}\right)\right] \tag{3.1}\\
\text { for } u \text { from } P\{u\}, x\left(t_{\alpha}\right) \text { из } G\left\{t_{\alpha}\right\}
\end{gather*}
$$

In order to solve Problem (3.1) by the substitution of variables $x=y+w$ we break down system (1.1) into two subsystems:

$$
\begin{gather*}
d y / d t=A y+B u, \quad y\left(t_{\alpha}\right)=y^{\alpha} \tag{3.2}\\
d w / d t=A w, \quad w\left(t_{\alpha}\right)=x\left(t_{\alpha}\right)-y^{\alpha}, \quad x\left(t_{\alpha}\right) \in \vec{G}\left\{t_{\alpha}\right\} \tag{3.3}
\end{gather*}
$$

The point $y^{\boldsymbol{a}}$ is chosen to facilitate computation. For example, we can set $\boldsymbol{y}^{\boldsymbol{a}}=0$. The linear transformation

$$
\begin{equation*}
w=X\left[t_{\beta}, t_{\alpha}\right] w\left(t_{\alpha}\right) \tag{3.4}
\end{equation*}
$$

transforms the domain $G\left\{t_{a}\right\}$ into some domain $\left.W t_{t_{a}}\right\}$. The solutions $y\left(t_{\beta}\right)$ of system (3.2) for various u (1.4) form the attainability domain $\Gamma\left[y,{ }^{a}{ }_{a},{ }^{t} \beta, \mu\right]$ of the process $y(t)$ by the instant $t=t_{\beta}$ for $y\left(t_{a}\right)=y^{a}$ and for $u=u(t)(1.4)$. By the Cauchy formula we have

$$
\begin{equation*}
y\left(t_{\beta}\right)=X\left[t_{\beta}, t_{\alpha}\right] y^{\alpha}+\int_{i_{\alpha}}^{t_{\beta}} X\left[t_{\beta}, \tau\right] B u(\tau) d \tau \tag{3.5}
\end{equation*}
$$

From (3.1), (3.4), and (3.5) we infer that

$$
\begin{equation*}
\varepsilon\left(t_{\alpha}\right)=\min _{u} \gamma\left[y\left(t_{\beta}\right)\right] \quad \text { for } x[u] \leqslant \mu \tag{3.6}
\end{equation*}
$$

Here

$$
\begin{equation*}
\Upsilon\left[y\left(t_{\beta}\right)\right]=\max _{w} \varepsilon\left[y\left(t_{\beta}\right)+w\right] \quad \text { for } w \text { from } W\left\{t_{\alpha}\right\} \tag{3.7}
\end{equation*}
$$

Problem (3.6), (3.7) consists in determining the point $y_{0}{ }^{\beta}$ from the domain $\Gamma\left[y{ }_{i} t_{a}, t, \beta, \mu\right]$ and the control $u=u^{\circ}(t)$ which minimize the function $y\left[y\left(t_{\beta}\right)\right]$ under condition (1.4). In other words, we must determine the points $y(t, \beta)$ which form the attainability domain of the process $y(t)$. To find the attainability domain $\Gamma\left[y^{\alpha}, t_{\alpha},{ }^{t}, \mu\right]$ of the process let as consider the problem of optimal transfer [3] of system (3.2) from the initial point $y^{\boldsymbol{a}}$ to some temporarily fixed point y in a time $t_{\alpha} \leq t \leq t_{\beta}$ under the condition of minimal intensity $x[u]$. As we know [4], the golution of such a problem can be reduced to finding the vector k which solves the problem

$$
\begin{equation*}
\max _{k} c^{\prime}\left[y^{\beta}\right] \cdot k=\zeta^{\circ}\left[y^{\beta}\right] \tag{3.8}
\end{equation*}
$$

under the condition

$$
\begin{equation*}
\rho\left[B^{\prime} S\left[\tau, t_{\beta}\right] k\right] \leqslant 1 \tag{3.9}
\end{equation*}
$$

where $S\left[t, t_{\beta}\right]$ is the fundamental matrix of the system $d s / d t=-A^{\prime}$'s adjoint to system (3.3), and where $c[y]=y^{\beta}-X\left[t_{\beta}, t_{a}\right] y^{\alpha}$. The control $u^{\circ}(t)$ which solves the problem of optimal transfer of system (3.2) from the position y^{α} to the position y^{β} has the norm $\rho *[u]=$ $\left.=\zeta^{\circ} \Gamma_{y} \beta\right]$ and can be determined from the maximum rule [4].

$$
\begin{gather*}
\int_{i_{\alpha}}^{t_{3}} k^{\circ} S\left[\tau, t_{\beta}\right] B u^{\circ}(\tau) d \tau=\max _{u} \int_{i_{\alpha}}^{t_{3}} h^{\circ \circ} S\left[\tau, t_{\beta}\right] B u(\tau) d \tau \tag{3.10}\\
\text { for } \rho^{*}\left[u_{j} \leqslant \zeta^{\circ}\left[y^{8}\right]\right.
\end{gather*}
$$

where k° and $\zeta^{\circ}\left[y^{\beta}\right]$ are the solution of problem (3.8), (3.9).
Thus, by solving problem (3.8), (3.9) we obtain an expression for the control intensity in the form of the function $\zeta^{\circ}[y]$ of the final state $y\left(t_{\beta}\right)$ of system (3.2) at the instant $t=t_{\beta}$. In view of the fact that the intensity is bounded by the constant μ (1.4), we infer from (3.6) and (3.7) that the problem of determining $\varepsilon\left(t_{a}\right)$ reduces to the problem of finding the arbitrary extremum

$$
\begin{equation*}
\min _{v} \gamma\left[y\left(t_{\beta}\right)\right]=\varepsilon\left(t_{\alpha}\right) \tag{3.11}
\end{equation*}
$$

under the condition

$$
\begin{equation*}
\zeta^{\circ}\left[y\left(t_{\beta}\right)\right] \leqslant \mu \tag{3.12}
\end{equation*}
$$

where $\zeta^{\circ}\left[y\left(t_{\beta}\right)\right]$ must be determined from conditions (3.8), (3.9).
Having determined the point $y_{0}{ }^{\beta}$ corresponding to the minimum from (3.7), (3.11), and (3.12), we can find from (3.8) and (3.9) the optimal control $u^{\circ}(t)$ which ensures maximal closeness $\varepsilon\left(t_{\alpha}\right)$ of the phase point to the specified state $x=x_{*}$.

Notes 3.1. We note that in those cases where problem (3.6), (3.7) involves minimization of the fanction $\gamma\left[y\left(t_{\beta}\right)\right]$ whose datum levels $\gamma\left[y\left(t_{\beta}\right)\right]=$ const are convex, the problem of determining the value of $\varepsilon\left(t_{q}\right)$ becomes simpler, since some of the minimization and maximization operations in probfem (3.8) to (3.10) can then be interchanged [3,5 and 6].
3.2. We have described a procedure for determining the optimal instant $t_{\alpha}{ }^{\circ}$ of awitchover from tracking to control of object motion under the assumption that the tracking problem.is solved each time at the instant $T=t_{a}{ }^{\prime}$ when the function $\varepsilon\left(\tau \mid t_{a}\right)$ assumes its minimal value in the segment $\left[t_{\alpha}{ }^{\prime}, t_{\beta}\right]$. It is sometimes convenient to follow a similar procedure in which the sequence of instants $t_{k}=t_{k-1}+\Delta t$ of the tracking fixes is preselected rather than chosen on the basis of the minimum condition for the function $\varepsilon\left(\left.\tau\right|_{a}\right)$.
4. Example. Let us consider a material point whose motion along the straight line $\boldsymbol{\xi}$ is described by Eqs.

$$
\begin{equation*}
\frac{d x_{1}}{d t}=x_{2}, \quad \frac{d x_{3}}{d t}=0, \quad 0 \leqslant t \leqslant 1 \quad\left(x_{1}=\xi, x_{2}=\frac{d \xi}{d t}\right) \tag{4.1}
\end{equation*}
$$

We assume that the exact velocity of the point at $t=0$ is not known, but that the velocity at this instant satisfies the condition $m_{0} \leq x_{2}(0) \leq n_{0}$. The velocity $x_{2}(6)$ at the instant $\tau=t$ can be determined by measuring the coordinate x_{1}. This measurement involves some error $\omega_{1}(t)$ of bounded magnitude

$$
\begin{equation*}
\left|\omega_{1}(t)\right| \leqslant \delta, \quad \delta>0-\text { const } \tag{4.2}
\end{equation*}
$$

We also assume that the motion of the point can be corrected by varying the velocity of the point, but that the sapply of energy $x[u]$ available for this correction is limited,

$$
\begin{equation*}
x[u]=\left[\int_{t_{\alpha}}^{t_{\beta}} u^{2}(\tau) d \tau\right]^{1 / 2} \leqslant \mu, \quad \mu>0-\text { const } \tag{4.3}
\end{equation*}
$$

We are required to choose the instant $t=t_{\alpha}^{\circ}$ of switchover from tracking to control in such a way that in the time $\left(1-t_{a}{ }^{\circ}\right)$ remaining for control, the control u (4.3) can be used to minimize the velocity of the point, i,e. such that

$$
\begin{equation*}
\varepsilon\left[x\left(t_{\beta}\right)\right]=\left|x_{3}\left(t_{\beta}\right)\right|=\min _{t_{\alpha}} \tag{4.4}
\end{equation*}
$$

at the instant $t=t^{\prime} \beta$ of termination of motion.
We know [4] that the optimal solving operation $\phi^{\circ}\left[x_{1}\right.$] which determines the velocity $x_{2}\left(t_{\alpha}\right)$ of a point moving by inertia $\left(u(\tau) \equiv 0,0 \leq \tau \leq t_{\alpha}\right)$ at the instant $t=t_{\alpha}$ under condition (4.2) is given by

$$
\begin{equation*}
\boldsymbol{\Psi}^{\circ}\left[x_{1}\right]=\left[x_{1}\left(t_{\alpha}\right)-x_{1}(0)\right] / t_{\alpha}=x_{2}\left(t_{\alpha}\right) \tag{4.5}
\end{equation*}
$$

and therefore coincides with the standard formula for computing the velocity of a uniformly moving point. We note that the optimal solving operation $\phi^{\circ}\left[x_{1}\right]$ has a form different from (4.5) for a different specified intensity of the error $\Delta(\tau)$. The velocity $x_{2}\left(t_{\alpha}\right)$ is computed with the error $\omega_{2}\left(t_{\alpha}\right)$, and $\left|\omega_{2}\left(t_{\alpha}\right)\right| \leq 2 \delta / t_{\alpha}$.

The domain of possible states $G\left\{t_{a i}\right\}$ is a segment $\left[n_{i}, m_{i}\right]$, where

$$
n_{i}=\left\{\begin{array}{lll}
n_{i-1} & \text { for } y_{\alpha i}+\Lambda_{i} \geqslant n_{i-1} \\
y_{\alpha i}+\Lambda_{i} & \text { for } y_{\alpha i}+\Lambda_{i}<n_{i-1}
\end{array}, \quad m_{i}= \begin{cases}m_{i-1} & \text { for } y_{\alpha i}-\Lambda_{i} \leqslant m_{i-1} \\
y_{\alpha i}-\Lambda_{i} & \text { for } y_{\alpha i}-\Lambda_{i}>m_{i-1}\end{cases}\right.
$$

Here $y_{a i}=x_{2}\left(t_{a i}\right)(1.5),(4.5)$ and $\Lambda_{i}=2 \delta / t_{a i}$, and the instants $t_{a i}$ are found at the ($i-1$)-th step of solving Problem 3. Recalling that the maximum of the function $\varepsilon\left[x\left(t_{\mathcal{B}}\right)\right]$ with respect to w is attained on the boundary of the domain $W\left[t_{a i}\right\}$ (3.4), i.e. at the point $w_{a i}=\left(n_{i}-m_{i}\right) / 2$, we find that at each instant $t=t_{\alpha i}$ the function $\gamma[\gamma](3.7)$ is given by

$$
\begin{equation*}
\tau[y]=|y|+w_{a i} \tag{4.6}
\end{equation*}
$$

and that the function $\zeta^{\circ}[y]$ after we have solved problem (3.8), (3.9), (4.3) is given by Expression

$$
\begin{equation*}
\zeta^{\circ}[y]=\frac{\mu\left|y-y_{i}^{\circ}\right|}{M\left(t_{\alpha i}\right)}, \quad y_{i}^{\circ}=\frac{n_{i}+m_{i}}{2}, \quad M\left(t_{\alpha i}\right)=\mu\left(1-t_{\alpha i}\right)^{1 / 2} \tag{4.7}
\end{equation*}
$$

We have thus reduced the problem to finding the minimum of the function (4.6) under Condition (4.7). At each instant $t=t_{a i}$ the minimum $\varepsilon\left(t_{a}\right)$ (3.11) of the fanction $\gamma[y]$ (4.6) either: a) equals $w_{a i}$. and is attained at the point $y=0$ (if $\left|\gamma_{a i}\right| \leq M\left(t_{a i}\right)$), or b) equals $w_{a i}+\left|y_{a i}\right|-M\left(z_{a i}\right)$ and is attained at one of the ends of the segment $\left[y_{a i}-M\left(t_{a i}\right) y_{a i}+\right.$ $\left.+M\left(t_{a i}\right)\right]\left(i f\left|y_{a i}\right|>M\left(t_{a i}\right)\right.$. In the latter case switchover to control shoald be effected immediately.

The predicting function $\varepsilon\left(\tau \mid t_{a i}\right)$ for all $\tau>\varepsilon_{a i}$ is given by

$$
\varepsilon\left(\tau \mid t_{\alpha i}\right)= \begin{cases}w_{\tau i} & \text { for }\left|y_{\tau i}\right| \leqslant M(\tau) \\ w_{\tau i}+\left|y_{\tau i}\right|-M(\tau) & \text { for }\left|y_{\tau i}\right|>M(\tau)\end{cases}
$$

where $w_{\tau i},{ }^{t} \tau_{i}$, and $M(\tau)$ denote the quantities

$$
\begin{gathered}
w_{\tau i}=\left\{\begin{array}{ll}
\Lambda & \text { for } \Lambda \leqslant w_{\alpha i}, \\
w_{\alpha i} & \text { for } \Lambda>w_{\alpha i},
\end{array} \quad y_{\tau i}= \begin{cases}\left(\left|N_{i}\right|-\Lambda\right) & \operatorname{sign} N_{i} \\
y_{i}^{\circ} & \text { for } \Lambda \leqslant w_{\alpha i} \\
\text { for } \Lambda>w_{\alpha i}\end{cases} \right. \\
N_{i}=\left\{\begin{array}{lll}
n_{i} & \text { for }\left|n_{i}\right| \geqslant\left|m_{i}\right| \\
m_{i} & \text { for }\left|n_{i}\right|<\left|m_{i}\right|
\end{array} \quad \Lambda=\frac{2 \delta}{\tau}, \quad M(\tau)=\mu(1-\tau)^{1 / 2}\right.
\end{gathered}
$$

The above procedure was realized on a computer for various values of the constante δ, μ, m_{0}, and n_{0}, and specifically (see Fig. 1) for $\delta=0.1, \mu=3.5, n_{0}=-m_{0}=3, x_{2}{ }^{*}=1$. The instants of prediction tumed out to be $t_{a_{1}}=0.452, t_{a_{2}}=0.867, t_{a 3}=0.902$. For $t=t_{a_{3}}$ we obtained $\varepsilon\left(\tau \mid t_{a 3}\right)>\varepsilon\left(t_{a 3}\right)=0.137$ for all $\tau>t_{a 3}$. Hence, the instant $t=t_{a 3}$ was the optimal instant of switchover from tracking to control of motion of the point.

BIBLIOGRAPHY

1. Riasin, V.A., Optimal oneestep correction in a simnlation problem. Teor. Veroyat. Prim. Vol. 11, No. 4, 1966.
2. Kalman, R., On the general theory of control syatems, in: Proceedinge of the First Congress of the International Automatic Control Federation, Vol. 2. Iad. AN SSSR, Moscow, 1961.
3. Krasovskii, N.N., On the theory of controllability and observability of linear dynamic systems. PMM Vol. 28, No. 1, 1964.
4. Krasovskii, N.N., Motion Control Theory. "Nauka" Press, Moscow, 1967.
5. Antosiewicz, H.A., Linear control systems. Arch. Rat. Mech. Anal. Vol. 12, No. 4, 1963.
6. Gabasov, R. and Kirillova, F.M., The solution of certain problems of optimal process theory. Avtomatika i Telemekhanika Vol. 25, No. 7, 1964.

[^0]: *) In reality the tracking and control intervals are separated by a certain intermediate interval during which the decision to switch over to control is taken. We shall idealize the problem, however, by assuming that all the compatations required for adopting this decision are carried out simulteneously, and even that switchover to control is possible at the instant $t=t_{a}$ when tracking is terminated.

